Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(38): 35242-35255, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37780029

RESUMO

We reported mono and bimetallic ferrocene-based 1,2,3-triazolyl compounds as potential burning rate catalysts in their neutral and ionic forms. All complexes reported here were characterized using 1H and 13C NMR, elemental analysis, and Mössbauer spectroscopy, which was performed for neutral and oxide compounds. The complexes present quasireversible redox potentials with higher oxidative ability than ferrocene and catocene under the same conditions. The complexes were tested as catalysts on the thermal decomposition of ammonium perchlorate (AP) and examined by a differential scanning calorimetry technique to gain further knowledge about their catalytic behavior. Compound 1 causes a decrease of the high-temperature decomposition (HTD) of AP positively, decreasing the decomposition temperature of AP to 345 °C and consequently increasing the energy release to 1939 J·g-1. We took the residues from the pans after testing from the DSC to elucidate the underlying reaction pathways. We obtained the size of the nanostructures formed after thermal decomposition of AP determined by the TEM technique. The diameter and size distribution of iron oxide nanoparticles formed depend on the alkyl sidechain of the triazolium ring, which induces the formation of nanoparticles with a double diameter and size distribution compared to their neutral analogues, suggesting that the possible intermediate for the mechanism degradation of AP by ferrocene derivatives is nanoscale Fe2O3 or similar oxides.

2.
ACS Omega ; 7(23): 19152-19157, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35721901

RESUMO

This contribution describes a novel method for the detection of trace amounts of trinitrotoluene (TNT) using a cluster of hexamolybdenum with general formula [Mo6Cl14]2-. The molybdenum cluster was characterized by UV-visible, FT-IR, and fluorescence techniques, and the synthesis was efficient and reproducible. The evaluation of the molybdenum cluster by TNT detection was perfomed by fluoresecent measurements, and the results were interpreted by the Stern-Volmer equation, obtaining K SV values of 2.9 × 105 and 1.6 × 104 M-1 in different concentration ranges. Further, the results suggest that at TNT concentrations higher than 4 × 10-5 mM (0.01 mg L-1) it is possible to measure the quenching of the cluster fluorescence. The DFT calculations indicate that the contribution of the TNT in the active lowest unoccupied molecular orbitals that are involved in the higher intensity transitions in the complex cluster-TNT are significant. This situation differs from all the luminescent [M6X8L6]2- clusters (M = Mo; X = facial bridging ligand, and L = labile axial ligands), where most of the closely spaced excited states are located in the {M6X8} q+ core. Thus, the TNT switches off the cluster luminescence. The approach using a [Mo6Cl14]2--based fluorescence sensor has the potential to be a sensing technology for the detection of nitroaromatic explosives.

3.
Inorg Chem ; 61(3): 1447-1455, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34995064

RESUMO

This work reports the characterization and application of two promising nanocatalysts for the thermal decomposition of ammonium perchlorate (AP). To obtain these composite materials, magnetite nanoparticles (Fe3O4 NPs) were functionalized with two different amine derivative groups, tertiary amine (Fe3O4 NPs-A1) and quaternary amine. X-ray photoelectron spectroscopy and differential scanning calorimetry provided mechanistic insights into the thermal decomposition of AP. Furthermore, tertiary and quaternary amine groups play a critical role, where the presence of an extra proton could favor an electron-proton transfer as the rate-determining step. Moreover, Fe3O4 NPs-A1 causes a diminution of the high-temperature decomposition of AP positively to 335 °C, increasing the energy release by 278 J g-1 and consequently affording the lowest activation energy (102 kJ mol-1), indicating a low degree of thermal stability, and accelerating the thermal decomposition of AP.

4.
Inorg Chem ; 60(3): 1436-1448, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33444017

RESUMO

We show the synthesis and characterization of four heterobimetallic compounds derived from s-indacene of general formula [{(CO)3Mn}-s-Ic-{MCp*}]q with M = Fe, Co, Ni, and Ru; q = 0, 1+. The complexes reported here were characterized by 1H and 13C NMR, elemental analysis and FT-IR. Additionally, the X-ray crystal structure of [(CO)3Mn-s-Ic-FeCp*] (1) and Mössbauer spectra are reported. The heterobimetallic compounds exhibit higher quasireversible redox potentials compared with ferrocene and catocene under the same reaction conditions. The complexes were tested as catalysts on the thermal decomposition of ammonium perchlorate examined by a differential scanning calorimetry technique to study their catalytic behavior. Compound (1) causes a decrease of ammonium perchlorate's decomposition temperature to 315 °C, consequently increasing the heat release by 138 J·g-1. Conversely, [{(CO)3Mn}-s-Ic'-{CoCp*}] (2) presents a higher heat release (2462 J·g-1), comparable to catocene.

5.
RSC Adv ; 10(39): 23165-23172, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35520353

RESUMO

The catalytic activity of nanoparticles of cobalt hydroxide supported on reduced graphene oxide, Co(OH)2|rGO, was studied for the decomposition of ammonium perchlorate (AP), the principal ingredient of composite solid propellants. Co(OH)2|rGO was synthesized by an in situ reduction method, which avoided the application of extremely high temperatures and harsh processes. rGO stabilized the nanoparticles effectively and prevented their agglomeration. The performance of Co(OH)2|rGO as a catalyst was measured by differential scanning calorimetry. Co(OH)2|rGO affected the high-temperature decomposition (HTD) of AP positively, decreasing the decomposition temperature of AP to 292 °C, and increasing the energy release to 290 J g-1. The diminution of the HTD of AP by Co(OH)2|rGO is in between the best values reported to date, suggesting its potential application as a catalyst for AP decomposition.

6.
RSC Adv ; 9(15): 8480-8489, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35518654

RESUMO

The catalytic activity of graphene oxide (GO), reduced graphene oxide (rGO), copper nanoparticles (CuNP) and rGO supported copper nanoparticles (rGO|CuNP) was investigated for the thermal decomposition of ammonium perchlorate (AP). GO was synthesized using a methodology based on hydrophilic oxidation, while an environmentally friendly and non-toxic reducing agent, l-ascorbic acid, was applied for the in situ reduction of copper and GO. The supporting rGO reduced the mean size of the copper nanoparticles from approximately 6 to 2 Å due to the presence of stabilizing functional groups on the graphitic structure. Theoretical studies through Density Functional Theory revealed the important role of the epoxy and carbonyl groups of rGO on the stabilization of copper. The thermal decomposition process was studied based on DSC and TGA. GO, and rGO did not show a significant catalytic influence in the decomposition of AP. CuNP reduced the decomposition temperature of AP in greater magnitude than rGO|CuNP however, the synergistic effect of the rGO and CuNP increased the energy release significantly.

7.
Molecules ; 23(5)2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29772697

RESUMO

The wide tissue distribution of the adrenergic ß3 receptor makes it a potential target for the treatment of multiple pathologies such as diabetes, obesity, depression, overactive bladder (OAB), and cancer. Currently, there is only one drug on the market, mirabegron, approved for the treatment of OAB. In the present study, we have carried out an extensive structure-activity relationship analysis of a series of 41 aryloxypropanolamine compounds based on three-dimensional quantitative structure-activity relationship (3D-QSAR) techniques. This is the first combined comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) study in a series of selective aryloxypropanolamines displaying anti-diabetes and anti-obesity pharmacological profiles. The best CoMFA and CoMSIA models presented values of r²ncv = 0.993 and 0.984 and values of r²test = 0.865 and 0.918, respectively. The results obtained were subjected to extensive external validation (q², r², r²m, etc.) and a final series of compounds was designed and their biological activity was predicted (best pEC50 = 8.561).


Assuntos
Agonistas de Receptores Adrenérgicos beta 3/química , Fármacos Antiobesidade/química , Hipoglicemiantes/química , Propanolaminas/química , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Fármacos Antiobesidade/farmacologia , Sítios de Ligação , Desenho de Fármacos , Humanos , Hipoglicemiantes/farmacologia , Modelos Moleculares , Estrutura Molecular , Propanolaminas/farmacologia , Relação Quantitativa Estrutura-Atividade , Eletricidade Estática
8.
ACS Omega ; 3(7): 7278-7287, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458888

RESUMO

Graphene oxide quantum dot (GOQD) and reduced GOOD (rGOQD) were synthetized using a simple and straight methodology based on an oxidative treatment and sonication. GOQD and rGOQD were used as supporting agents for the in situ generation of gold nanoparticles, avoiding the use of additional stabilizers. GOQD resulted as a better support than rGOQD because of the presence of higher functional groups that can interact with gold. Theoretical studies through density functional theory revealed the important role of the epoxy groups of GOQD on the stabilization of gold. GOQD and GOQD-Au were tested for the first time as catalysts for the decomposition of solid composite propellants. GOQD not only lowered the decomposition temperature of ammonium perchlorate (AP) but also enhanced the exothermic heat of AP, in comparison to graphene and GO. GOQD-Au increased the energy release; however, the effect on the decrease of the decomposition temperature of AP was not as significant as other previous reported catalysts.

9.
Molecules ; 22(7)2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28678175

RESUMO

The molybdenum cluster [Mo6Cl14]2- is a fluorescent component with potential for use in cell labelling and pharmacology. Biological safety and antiviral properties of the cluster are as yet unknown. Here, we show the effect of acute exposition of human cells and red blood cells to the molybdenum cluster and its interaction with proteins and antiviral activity in vitro. We measured cell viability of HepG2 and EA.hy926 cell lines exposed to increasing concentrations of the cluster (0.1 to 250 µM), by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. Hemolysis and morphological alterations of red blood cells, obtained from healthy donors, exposed to the cluster (10 to 200 µM) at 37 °C were analyzed. Furthermore, quenching of tryptophan residues of albumin was performed. Finally, plaque formation by rotavirus SA11 in MA104 cells treated with the cluster (100 to 300 µM) were analyzed. We found that all doses of the cluster showed similar cell viability, hemolysis, and morphology values, compared to control. Quenching of tryptophan residues of albumin suggests a protein-cluster complex formation. Finally, the cluster showed antiviral activity at 300 µM. These results indicate that the cluster [Mo6Cl14]2- could be intravenously administered in animals at therapeutic doses for further in vivo studies and might be studied as an antiviral agent.


Assuntos
Antivirais/farmacologia , Molibdênio/química , Compostos Organometálicos/farmacologia , Rotavirus/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Hemólise , Células Hep G2 , Humanos , Técnicas In Vitro , Compostos Organometálicos/química , Albumina Sérica Humana/metabolismo
10.
J Phys Chem A ; 121(13): 2698-2703, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28319378

RESUMO

Corannulene, C20H10, exhibits a concave surface in the ground state that is able to experience a bowl-to-bowl inversion through a planar conformation. Such a structure is the smaller example resembling an isolated-pentagon motif, as a relevant fragment in fullerene chemistry. Here, we explored the differences between bowl and planar conformations involving both energetic and 13C NMR properties, for the neutral and tetraanionic species by using density functional theory (DFT) methods. This allows us to understand the variation of the chemical environment at the carbon atoms upon planarization of this representive motif. Our results reveal that the variation of the chemical shift comes about from the variation of different main components of the shielding tensor, according to the relative position of the carbon atoms in the structure (i.e., rim, hub, and protonated), which is more relevant for both hub and protonated sites, in contrast to the rim carbon remaining almost unshifted. Interestingly, the planar transition state exhibits a more favorable bonding situation than the bowl-shaped conformation; however, the higher strain is enough to overcome this extra stabilization. Upon reduction to the tetraanionic counterpart (C20H104-), a lesser strain in the planar conformation is observed, decreasing the inversion barrier. In addition, the formation of the concentric aromatic ring systems in C20H104-, results in a more axially symmetric chemical shift anisotropy (CSA) tensor for the hub carbons, accounting in a local manner, for the concentric aromatic behavior in such structure in contrast to the neutral parent. These observations can be useful to evaluate the aromatic behavior of teh isolated-pentagon rule (IPR) motif in fullerene cages.

11.
Molecules ; 22(3)2017 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-28273884

RESUMO

The ß3 adrenergic receptor is raising as an important drug target for the treatment of pathologies such as diabetes, obesity, depression, and cardiac diseases among others. Several attempts to obtain selective and high affinity ligands have been made. Currently, Mirabegron is the only available drug on the market that targets this receptor approved for the treatment of overactive bladder. However, the FDA (Food and Drug Administration) in USA and the MHRA (Medicines and Healthcare products Regulatory Agency) in UK have made reports of potentially life-threatening side effects associated with the administration of Mirabegron, casting doubts on the continuity of this compound. Therefore, it is of utmost importance to gather information for the rational design and synthesis of new ß3 adrenergic ligands. Herein, we present the first combined 2D-QSAR (two-dimensional Quantitative Structure-Activity Relationship) and 3D-QSAR/CoMSIA (three-dimensional Quantitative Structure-Activity Relationship/Comparative Molecular Similarity Index Analysis) study on a series of potent ß3 adrenergic agonists of indole-alkylamine structure. We found a series of changes that can be made in the steric, hydrogen-bond donor and acceptor, lipophilicity and molar refractivity properties of the compounds to generate new promising molecules. Finally, based on our analysis, a summary and a regiospecific description of the requirements for improving ß3 adrenergic activity is given.


Assuntos
Agonistas de Receptores Adrenérgicos beta 3/química , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Indóis/química , Indóis/farmacologia , Relação Quantitativa Estrutura-Atividade , Desenho de Fármacos , Humanos , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Conformação Molecular , Estrutura Molecular
12.
Eur J Pharm Sci ; 101: 1-10, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28137469

RESUMO

The preceding years have brought an exponential increase in our understanding of the endocannabinoid system (ECS), including the knowledge of CB1 and CB2 cannabinoid receptors, endocannabinoids, and the enzymes that synthesize and degrade endocannabinoids. Among these ECS components CB2 receptors have been the subject of considerable attention, primarily due to their promising therapeutic potential to treat numerous pathologies while avoiding the adverse psychotropic effects that can accompany CB1 receptor-based therapies. Recently, our research group has reported a new series of non-cytotoxic benzo[d]imidazoles and benzo[b]thiophenes displaying high CB2/CB1 selectivity index. In order to investigate the structural requirements for CB2 ligands and to derive a predictive model that can be used for the design of novel selective CB2 ligands, a three-dimensional quantitative structure-activity relationship (3D-QSAR) study was performed on the above mentioned chemical series employing comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) techniques. The CoMFA and CoMSIA models displayed high external predictability (rpred2 0.919 and 0.908) and good statistical robustness. Valuable information regarding the steric, electrostatic and hydrophobic properties of the molecules was obtained, and several modifications around both heterocycles were evaluated with the aim to generate new promising series of benzo[d]imidazoles and benzo[b]thiophenes derivatives displaying high CB2 selectivity and low toxicity.


Assuntos
Benzimidazóis/química , Receptor CB2 de Canabinoide/química , Tiofenos/química , Canabinoides/química , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade , Receptor CB1 de Canabinoide/química , Eletricidade Estática
13.
ChemistryOpen ; 4(5): 651-5, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26491646

RESUMO

The complexation of metal cations into a host-guest situation is particularly well exemplified by [2.2.2]paracyclophane and Ag(I), which leads to a strong cation-π interaction with a specific face of the host molecule. Through this study we sought a deeper understanding of the effects the metal center has on the NMR spectroscopic properties of the prototypical organic host, generating theoretical reasons for the observed experimental results with an aim to determine the role of the cation-π interaction in a host-guest scenario. From an analysis of certain components of the induced magnetic field and the (13)C NMR shielding tensor under its own principal axis system (PAS), the local and overall magnetic behavior can be clearly described. Interestingly, the magnetic response of such a complex exhibits a large axis-dependent behavior, which leads to an overall shielding effect for the coordinating carbon atoms and a deshielding effect for the respective uncoordinated counterparts, evidence that complements previous experimental results. This proposed approach can be useful to gain further insight into the local and overall variation of NMR shifts for host-guest pairs involving both inorganic and organic hosts.

14.
Molecules ; 19(3): 2842-61, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24603555

RESUMO

A 3D-QSAR (CoMFA) study was performed in an extensive series of aminoalkylindoles derivatives with affinity for the cannabinoid receptors CB1 and CB2. The aim of the present work was to obtain structure-activity relationships of the aminoalkylindole family in order to explain the affinity and selectivity of the molecules for these receptors. Major differences in both, steric and electrostatic fields were found in the CB1 and CB2 CoMFA models. The steric field accounts for the principal contribution to biological activity. These results provide a foundation for the future development of new heterocyclic compounds with high affinity and selectivity for the cannabinoid receptors with applications in several pathological conditions such as pain treatment, cancer, obesity and immune disorders, among others.


Assuntos
Ligantes , Relação Quantitativa Estrutura-Atividade , Receptor CB1 de Canabinoide/química , Receptor CB2 de Canabinoide/química , Modelos Moleculares , Conformação Molecular , Conformação Proteica , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Estereoisomerismo
15.
Chem Commun (Camb) ; 49(90): 10566-8, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24013856

RESUMO

The d(1) tungsten-alkylidyne radical [W(CPh)(dppe)2Cl](+) reacts with H2 to give the d(0) hydride [W(CPh)(H)(dppe)2Cl](+), which on deprotonation yields the d(2) photoredox chromophore W(CPh)(dppe)2Cl. This family of reactions results in a cycle by which renewable H2 provides the reducing equivalents for photochemical reductions.

16.
Inorg Chem ; 49(9): 4175-8, 2010 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-20349998

RESUMO

Computational methods based on density functional theory have been applied to address the design of tailored HOMO-LUMO gap bimetallic complexes. We focus our attention on the [Cp*Fe-(L)-FeCp*] system, where two ferrocenyl units are linked through the dianion of fused ring ligands such as pentalene, s-indacene, dicyclopenta-[b,g]-naphthalene, dicyclopenta-[b,i]-anthracene and dicyclopenta-[b,l]-tetracene. Our DFT calculations on the title organometallic complexes suggest a controlled decrease in the HOMO-LUMO gap, which is desirable for studies on electron-transfer phenomena, as well as the design potential devices for molecular electronic purposes.


Assuntos
Simulação por Computador , Compostos Ferrosos/química , Modelos Químicos , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...